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TRANSFER OF ANTIMICROBIAL RESISTANCE GENE THROUGH LIVESTOCK

FOOD PRODUCTS AND ITS IMPACT ON HUMAN HEALTH

INTRODUCTION

The discovery of antibiotics in the 1940s was a
transformative event in the history of medicine, and it
significantly impacted both human and animal health.
Originally designed to treat life-threatening diseases,
antibiotics are now widely used to prevent infections
in surgical patients, protect cancer patients, stimulate
growth, and promote the health of livestock and other
food animals. However, the emergence of bacterial
populations resistant to multiple antibiotics, including
those used as last resort, is an escalating concern, and
its impact has progressed from a minor issue to a
severe global hazard, regardless of the wealth of a
country or the efficacy of its healthcare system.
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ABSTRACT: Antimicrobial resistance (AMR), is a chief worldwide public health concern with grave

health and socio-economic repercussions. Besides improper use of antibiotics, exposure to contaminated

water or soil, and close contact with infected individuals; consumption of food products derived from

animals carrying antimicrobial-resistant bacteria and genes is a major pathway for transferring AMR to

humans. The occurrence of antimicrobial resistance in bacteria can result from both innate and acquired

mechanisms, and its spread among bacteria is contributed by the environment, animals, and humans.

Analysis of available data shows that non-therapeutic antimicrobial administration to animals increases

resistance rates in bacteria in their gut and surroundings. The food supply chain facilitates the transfer of

genes associated with AMR and despite considerable efforts to restrict antibiotic overuse, numerous

regions of the world are witnessing a surge in clinical antibiotic resistance rates. To address this

multifaceted resistance issue effectively, a "One Health" approach is critical, along with concerted efforts

across all sectors. Considering the importance and scientific concern of this emerging public health issue,

a thorough review of the available literature on the transmission of AMR from animal-derived foods to

humans is presented in this paper.
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Bacteria can be found in every living organism, as
well as in the soil, water, air, and foods, and due to
the interconnectedness of ecosystems, there is a
continuous transfer of germs. Thus, the antimicrobial
resistance (AMR) crisis is no longer limited to the
medical sciences, and a multidisciplinary approach
involving microbiologists, epidemiologists, evolutionary
biologists, engineers, ecologists, sociologists,
policymakers, governments, and NGOs is necessary to
combat this complex problem [1].

The use of antibiotics in agriculture has been
linked to antimicrobial resistance in human infections
and even consumption of food is considered a potential
means of transmitting antimicrobial-resistant bacteria
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and genes to humans [2]. Antibiotics are administered
to animals for various purposes, including the treatment,
prevention, and control of diseases, as well as the
promotion of growth and improving feed efficiency.
Antimicrobial Growth Promoters (AGPs) were first
introduced in the mid-20th century when sub-therapeutic
doses of antibiotics were found to improve the feed-
to-weight gain ratio for poultry, beef cattle, and swine
[3]. However, later the administration of antimicrobial
growth stimulants has been associated with the presence
of antimicrobial-resistant bacteria in farm workers and
animals [4], leading to the prohibition of all
antimicrobial compounds as AGPs by many countries
since the year 2000. A major public health concern in
the twenty-first century, according to the World Health
Organization, is the rise of bacteria and other viruses
that are resistant to antibiotics [5].

An inability to properly treat human illnesses may
be a result of the overuse or underdose of
antimicrobials used for infection management,
prevention, and treatment in animal husbandry and
human clinics [1, 5]. One major cause of treatment
failure is the eating of potentially resistant bacteria-
carrying animal products such as meat, fish, eggs,
milk, and dairy products. Indirect routes of transmission
for antibiotic-resistant bacteria include contaminated
food or drink, human-to-human contact, and the
colonized or diseased animals' own fluids, excretions,
and secretions. It has been shown that zoonotic
transmission occurs because animals raised for human
consumption serve as reservoirs of bacteria that contain
antimicrobial-resistant genes [6]. This review aims to
provide an impartial discussion on the transmission of
AMR from animal-derived foods to humans.

THE ANTIMICROBIALS

Substances that can kill or prevent the growth of
microorganisms including fungi, parasites, viruses, and
bacteria are known as antimicrobials. They play a
critical role in treating infectious diseases in humans
and animals, and in preventing the spread of harmful
pathogens in food production and healthcare settings.
Antimicrobials can be classified into various types,
including antibiotic, antiviral, antifungal, and anti-
parasitic. Among all antimicrobials, the most common
ones are those designed to kill or inhibit the growth of
germs in animals and people alike [7]. The
indiscriminate use of antibiotics in animals is generally
associated with the development of AMR bacteria, so
our discussion will be mainly focused on these
antimicrobials.

ANTIBIOTICS-MODE OF ACTION

Due to differences in structure and affinity for
specific target areas within bacterial cells, antibiotics
have varying mechanisms of action (Fig. 1).

Inhibitors of cell wall synthesis

The cellular structures of humans and animals lack
cell walls, whereas such walls assume a critical role
in the survival of bacterial cells. Therefore, one
promising approach to treating bacterial infections is
the selective targeting of cell walls with antimicrobial
medicines. The antibiotic family includes medicines
that work in this way, including penicillin,
cephalosporin, bacitracin, and vancomycin [8].

Inhibitors of cell membrane function

The cell membrane represents a vital component of
the cellular architecture that functions as a selectively
permeable barrier, regulating the influx and efflux of
various solutes. Cellular viability and survival hinge
on the preservation of this membrane, as any harm or
disturbance might threaten the delicate cellular
environment. While antimicrobials that target the cell
membrane have a wide range of effectiveness, their
lack of selectivity presents considerable dangers when
administered systemically in eukaryotic hosts, such as
humans and animals. Thus, topical applications are
the favored clinical approach. Polymyxin B and colistin
are two examples of drugs that operate using this
mechanism [9].

Inhibitors of protein synthesis

Bacterial growth and survival depend on protein
synthesis, a basic biological function. In order to
inhibit bacterial protein synthesis, several antibiotic
classes bind preferentially to the cytoplasmic 30S or
50S ribosomal subunits. Bacterial mortality or reduced
proliferation potential may ensue from the subsequent
disruption of regular cellular metabolism [10].
Aminoglycosides, macrolides, lincosamides,
streptogramins, chloramphenicol, and tetracyclines are
the antibiotics that function through this mechanism.

Inhibitors of nucleic acid synthesis

Genetic material, including DNA and RNA, is
essential for the correct transmission of hereditary
information during reproduction in bacteria and other
living creatures. Some antibiotics work by attaching
selectively to different parts of DNA or RNA production,
which disrupts normal cellular processes and eventually
kills bacteria [11]. Examples of such antibiotics include
quinolones, metronidazole, and rifampicin.
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Inhibitors of other metabolic processes

Several antibiotics selectively target critical cellular
processes essential for the survival of bacterial
pathogens. Both sulphonamides and trimethoprim exert
their effects by impeding a metabolic route known as
the folic acid pathway. Sulphonamides selectively target
dihydropteroate synthase, whereas trimethoprim inhibits
dihydrofolate reductase, both of which are enzymes
necessary for bacterial vitamin folic acid synthesis [12].

ANTIMICROBIAL RESISTANCE

Antimicrobial resistance denotes the capability of
microorganisms to withstand the growth-inhibiting or
lethal effects of antibiotics beyond their normal
susceptibility. Any agent that can reduce bacterial
counts or kill germs is considered an antimicrobial,
including chemical biocides used for disinfection in
food production environments and antibiotics used for
the treatment of bacterial infections in humans and
animals. The effectiveness of antibiotics in killing or
inhibiting the growth of microbes can be compromised
if the microorganisms develop resistance, thereby
making them less susceptible to the antibiotic's effects.
Antimicrobial resistance in bacteria can arise through
both innate and acquired mechanisms.

Innate resistance

Resistance that is inherent to microbes is called
innate resistance. To put it simply, antimicrobials
cannot overcome intrinsic resistance because it is a
natural process that occurs in all members of a certain
species. The resistance to antimicrobials is a property
that is determined by chromosomes and is closely
linked to the overall physiology of the microorganism.
In identical environmental conditions and antimicrobial
concentrations, innate mechanisms are likely
responsible for differences in antimicrobial resistance
that occur among various types, genera, species, and
strains of microorganisms [13].

Acquired resistance

Acquired resistance can result from either the
horizontal transmission of resistance genes or the
vertical evolution of structural or regulatory genes
[14]. The fast development of antibiotic resistance
among several human and veterinary bacterial genera
can be attributed to horizontal gene transfer (HGT),
the process by which some bacteria acquire resistance
through the exchange of mobile genetic components
such as transposons, plasmids, and integrons [15].

However, the selection pressure that develops from
the long-term abuse of antibiotics is the primary
mechanism that causes resistant bacteria to evolve and
spread [16]. While antimicrobials are effective against
some bacteria, they are often ineffective against
resistant strains that have acquired mechanisms to
protect themselves from being killed [5].

Mechanism of horizontal gene transfer (HGT)

Conjugation, transformation, and transduction are the
three most common possibilities through which bacteria
engage in HGT. Certain genetic structures, such as
plasmids, integrons, and transposons, greatly aid in the
horizontal transmission of genes that confer resistance
to antibiotics, their persistence in bacterial populations,
and the emergence of resistance to many drugs. Given
that they can spread from one location to another, these
segments of DNA are called mobile genetic elements
(MGEs). The environment, attributes of the recipient
and the donor populations, and the MGEs play important
roles in determining how often HGT occurs. In nature,
there may be additional, less common ways of DNA
transfer besides transformation, transduction, and
conjugation. Some examples include the movement of
genes for virulence and antibiotic resistance through
vesicles formed by fusing cells, the transmission of
viruses through particle-like structures, and the merging
of whole genomes by cellular fusion [17].

Conjugation

An undeviating connection between the recipient and
donor cells is necessary for conjugation, the transfer of
DNA from one live bacterial cell to another. Plasmids,
transposons, and other mobile elements frequently carry
antimicrobial resistance genes, while insertion elements,
integrons, and genomic islands may also be carriers. It
is known that transposons and insertion sequences can
move around and inside bacterial cells. Complex
assemblies may form from transposable elements and
plasmids. A plasmid or transposon can be conjugative
or non-conjugative, and either can be transferred through
conjugation. Due to the abundance of antimicrobial
resistance genes found on mobile elements like plasmids
and transposons, conjugation is believed to be the
principal mechanism by which bacteria pass these genes
to one another [18].

Transduction

The process of transduction is facilitated by
bacteriophages. The bacteriophage first binds to the
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bacterium, injecting its genetic material and maybe
some of the host bacterium's DNA. DNA needs to be
stabilized after entering the bacterial cell, and this can
be done by either becoming an independently
replicating element or by integrating it into the bacterial
genome [19]. The foreign DNA can drive the generation
of new phage particles after it has become stable
within the bacterial cell. Depending on the kind of
phage, this process can be used to transfer genomic
DNA of varying lengths from one bacterium to another.
A close relationship between bacterial strains is usually
necessary for transduction to occur, as bacteriophages
are extremely host-specific. The transduction capability
of a phage, on the other hand, is not limited to
infecting bacteria alone but can reach a far wider
variety of organisms [20].

Transformation

The acquisition of bare DNA from the environment
by bacteria is known as bacterial transformation. In
the stages of transformation, some bacteria at a certain
moment in their development cycle, or some bacteria
after death and lysis, liberate DNA in the environment.
Once that happens, the DNA is successfully absorbed
into the recipient bacterial cell present in the nearby
environment. The DNA is not degraded by the
nucleases of bacteria. Finally, the DNA that has been
integrated is expressed [21].

RESISTANCE AGAINST ANTIBIOTICS

There are a number of mechanisms by which
bacteria might acquire antibiotic resistance, including
the enzymatic destruction of antibiotics, the change of
antibiotic targets, alterations to the permeability of
bacterial cell walls, and the use of alternate pathways
to avoid the activity (Fig. 2).

Enzyme-mediated breakdown or modification

Antibiotic resistance frequently arises through the
enzyme-mediated breakdown or modification of
antibiotics. Enzymes called β-lactamase can break
down the β-lactam ring of β-lactam drugs such as
cephalosporins, which can lead to Gram-negative
bacteria developing resistance to certain antibiotic
classes [22]. The inactivation of aminoglycosides by
phosphotransferases, nucleotidyltransferases, and
acetyltransferases is another family of antibiotics where
enzymatic degradation is a significant route of
resistance [23]. There are numerous different forms of
each of these enzymes, each with a narrower or
broader range against a particular antibiotic.

Target modification

Antibiotic resistance due to target modification
occurs when an antibiotic's intended target molecule
(often an enzyme) undergoes a change that renders the
antibiotic ineffective at binding to its intended target.

Fig. 1. Mode of action of antibiotics.
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Among these mechanisms are mutations affecting the
topoisomerase and gyrase genes, which are the targets
of antibiotics such as quinolones and fluoroquinolones
[24]. Methicillin-resistant Staphylococcus aureus

(MRSA) is an illustration of a horizontally transmissible
target alteration. The mecA gene in MRSA encodes for
a penicillin-binding protein PBP2A variant with an
extremely low affinity for β-lactams. β-lactams inhibit
all PBPs except the low-affinity PBP2A [25].

Regulating the internal concentration of

antibiotics

To control the amount of antibiotics inside the cell,
one must change the permeability of the cell wall or
envelope, either by reducing entrance or increasing
efflux. Antibiotic penetration into a cell can be
influenced or blocked by modifications to cellular
pores. Tetracycline resistance is an example of how
particular increases in efflux can be achieved through
the acquisition of genes [26]. However, an increase in
efflux can also occur because of the over-expression
of efflux pumps that are normally present in the body,
leading to a phenotype that is resistant to many drugs.
There is a lack of consensus on the therapeutic
significance of the discrete resistance levels created
by such efflux pumps.

Adaptive resistance

Adaptive resistance occurs when cells add an extra
step to their normal physiological route. In most
cases, this is due to a surplus of a certain enzyme.
The E. coli and Citrobacter sp. produce an extra
dihydrofolate reductase that is resistant to the antibiotic
trimethoprim due to the presence of R plasmid. This
enzyme binds to many anti-folate compounds
differently than the chromosomal enzyme [27]. Quorum
sensing was found to exist alongside the mentioned
mechanisms. Density sensing, or quorum sensing, is a
physiological process of bacteria that regulates a wide
range of functions [28]. Quorum sensing (QS) processes
are found in both Gram-negative and Gram-positive
bacteria, but the signal molecules they utilize to
exchange information are distinct. By allowing cells
within microbial consortiums to receive signal
molecules, quantum sensing (QS) is essential for
defining microbial relationships. This triggers a chain
reaction that causes genes to be expressed. Because of
this, QS can affect food intake and the ensuing
metabolism of substances and energy, as well as the
architecture of microbial communities by modifying
microbial interactions to quickly respond to and adapt
to changing circumstances [29]. The QS system
controls several aspects of bacterial biology, including

Fig. 2. Mechanism of antibiotics resistance.
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bioluminescence, virulence factors, and tolerance of
disinfectants, spore formation, toxin generation,
motility, biofilm development, and drug resistance
[30]. Bacteria control the behavior of their entire
population through the production and secretion of
signal molecules, which are also called self-inducing
molecules [31]. When the concentration of signal
molecules reaches a certain point relative to the density
of the bacterial population, genes can be activated to
control the adaptability of the bacterial population.

ANTIMICROBIAL RESISTANT BACTERIA

AND ITS GENE IN LIVESTOCK FOOD

PRODUCTS

The use of antibiotics in cattle production is
widespread, serving multiple purposes: illness
prevention, control, and growth stimulation. On the
other hand, antibiotic resistance can be accelerated in
animal husbandry due to the antibiotics' abuse and
misuse. Bacteria that are resistant to antibiotics can
live in the guts of farm animals and spread to people
when they eat food that has been contaminated. This
can occur when meat, poultry, eggs, or dairy products
from animals carrying resistant bacteria are consumed
without proper cooking or heat treatment. It is evident
that the use of antimicrobials in animal production
and subsequent transmission of resistant
microorganisms to humans is heavily reliant on the
animal-based food supply chain. Antimicrobial use in
animal husbandry has declined during the past decade,

yet the problem persists in many farming operations.
Furthermore, the animal microbiome has been impacted
by the misuse of antimicrobials since the mid-century.
Research on the possibility of antibiotic-resistant
bacteria or their genes in foods derived from animals
is reviewed here.

Beef

Antimicrobials are used in beef cattle production
from the beginning of their lives and rising rates of
bacterial resistance to antibiotics have been documented
in various sectors of the cattle industry and the food
supply. Cattle are characterized as "super-shedders"
because they shed more Escherichia coli O157 than
other livestock. Due to the high risk of human infection,
especially due to environmental contact, super-shedding
has serious ramifications concerning the epidemiology
of E. coli O157. The Tetracycline resistance protein
tet(O) is primarily responsible for promoting
tetracycline resistance, which is associated with other
resistance mechanisms like ribosome protection and
efflux pumps, and is frequently produced through the
acquisition of the tet gene [32]. A rise in the prevalence
of bacteria harboring tetracycline resistance genes like
tet(A), tet(B), and tet(M) has been linked to the
extensive use of chlortetracycline [33]. The blaCTX-
M gene, which consults resistance to third-generation
cephalosporins, was recently found in E. coli isolated
from bovine fecal samples, confirming the presence of

Table 1. Antibiotic resistance genes (ARGs) in fermented foods.
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ESBL-producing E. coli in these samples [34]. The
Gram-negative bacterial plasmids belonging to the
Enterobacteriaceae group create extended-spectrum β-
lactamases, which are enzymes that are already resistant
to β-lactam antibiotics. Escherichia coli, or E. coli, is
the most well-known ESBL-producing bacteria and is
frequently cited as a primary cause of sepsis,
pneumonia, and urinary tract infections (UTI). The
most prevalent ESBL enzyme in humans is CTX-M β-
lactamase, with subtype variations according to region.
These nosocomial infections, which produce ESBLs,
are becoming more prevalent as infectious agents in
the population. In the veterinary industry, ESBL-
producing microorganisms are frequently encountered.
To determine if these ESBL bacteria are present in
both sick and healthy cows, pigs, and poultry farms,
research on these bacteria in livestock is crucial [35].
Analysis of plasmids from six isolates revealed that
all three AMR genes (blaCTX-M-1, sul2, and tetA)
were found clustered together on the same plasmid.
Thus, the use of several antibiotics, such as
cephalosporin, sulphonamide, and tetracycline, might
co-select for the same plasmid [36]. In a similar
manner, studies have shown that beef can disseminate
blaCTX-M, blaTEM, blaSHV-12, and blaCMY-2 ESBL
genes, the latter of which is responsible for plasmid-
mediated coding AmpC lactamase resistance (e.g.,
IncF, IncI1, IncN, and IncHI1) gene transfer [37].
Genes for resistance to vancomycin glycopeptide can
be transferred between bacteria, as seen with vanA,
which is found mostly in E. faecium, and vanB, which
is found in both E. faecium and E. faecalis, and vanC-
1, which is responsible for resistance in E. gallinarum

[38]. These results are very worrisome because
vancomycin is often the last line of defense against
methicillin-resistant Staphylococcus aureus (MRSA)
infections in humans. Additionally, MRSA carries
resistance to β-lactams via the mecA gene, which
encodes a distinct kind of penicillin-binding protein,
PBP2a. This protein has a low affinity for certain
compounds, giving it the ability to withstand their
effects [29]. S. aureus bacteria isolated from beef
samples exhibit antimicrobial resistance genes, namely
gyrA, and gyrB, which provide resistance to
fluoroquinolones [39, 40]. Most cases of
Campylobacter spp. having a cfr gene, that is resistant
to a variety of antibiotics - including tetracycline,
oxazolidinones, pleuromutilins, lincosamides, and
fluoroquinolones - occur in cattle and fowl.

Poultry

Disease control and treatment as well as growth
promotion necessitate the use of antimicrobials in the
rapidly expanding poultry sector. In recent years,
researchers all over the world have focused on how
antimicrobials affect the fecal microbiota of birds; as a
result, many ARGs are often identified in fecal samples
from poultry. It is commonly believed that chicken is a
major reservoir for E. coli bacteria, and thus, one of
the primary matrices responsible for harboring several
ARGs. The bla genes blaTEM, blaSHV and blaCTX-M
are the most common types in this matrix [41]. The
mcr-1 gene, which codes for polymyxin resistance, has
been found in Salmonella spp. recovered from chickens,
while the mecA, blaZe, and tetK genes, which confer
resistance to antibiotics in S. aureus, have been found
in poultry products [42]. Moreover, Enterococcus

faecalis with the erm(B), tet(L), and tet(M) resistance
genes, as well as optrA, which imparts resistance to
lincosamides, one of the final alternative drugs in
humans for treating infections, have been isolated from
chicken products [43, 44]. Chicken is also a major
reservoir of Klebsiella pneumoniae, which is a
significant human foodborne pathogen. One important
characteristic of these bacteria that are resistant to
antibiotics is the presence of ARGs that encode ?-
lactam resistance, like blaSHV, blaCTX-M-1, and
blaCTX-M-10. One possible route of infection in
humans with Yersinia spp. (having an antibiotics-
resistant gene) is through eating chicken [45].

Pork

Pig production makes extensive use of
antimicrobials. There is a correlation between the
manufacture of these drugs - which are used for both
medical purposes and to boost growth - and the
emergence and transmission of bacterial strains that
are resistant to antibiotics. Additionally, a correlation
between resistance genes in pig feces at birth and
after slaughter was established, indicating that these
ARGs persist in the fecal microbiome and, by
extension, in the intestinal microbiome of these animals
[46]. The antimicrobials used in swine production
have been linked to the presence of E. coli ARGs in
pig waste, carcasses, and sausages. Most reported are
those that confer resistance to beta-lactams (blaTEM,
blaCTX-M, blaSHV, and blaOXA), aminoglycosides
(ant(3)-I), gentamicin (aac(3)-I), and florfenicol (floR)
[47]. The greater prevalence of the mcr-1 gene in pig
samples relative to human isolates suggests that mcr-1
genes found in human E. coli are acquired from
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consuming pork [48]. The presence of Salmonella spp.
in pork, as reported by Cameron-Veas and coworkers
[49], poses public health risks due to the pathogen's
resistance to multiple antibiotics, including ampicillin,
streptomycin, and sulphonamides, used routinely in
humans. Multiple reports have shown that swine
bacterial isolates are resistant to many different classes
of antibiotics, including aminoglycosides (aphA1, aadA,
aadA2, aac(3) IV), sulphonamides (sul1), cephalosporin
(blaTEM, blaCTX-M-1 and blaCTX-M-14),
trimethoprim (dfrA12) and tetracyclines (tet(A), tet(B)).
Additionally, multidrug-resistant strains of Salmonella

typhimurium have been discovered, highlighting the
significance of pork-based foods as human resistance
gene carriers [49]. It was discovered in 2013 that the
erm(B) gene was positioned on a chromosomal island
that confers resistance to numerous antibiotics and it
mediates the natural transfer of macrolide resistance
between C. jejuni and C. coli isolated from pigs [50].
Therefore, consuming pork can expose you to harmful
levels of resistant bacteria.

Fish

Aquaculture is among the fastest-expanding food
production systems globally. Horizontal gene transfer,
recombination, and mutation in the human gut
microbiota can be facilitated by the widespread use of
antibiotics in fish and aquaculture, which in turn leads
to bacterial resistance. Utilizing pig and poultry dung
as fertilizers during the fish-rearing process is a
common practice in integrated fish farming. Numerous
resistance genes have been discovered in bacteria that
have been isolated from sediments and water used for
fish farming. A few examples of these genes are the
fox-ampC β-lactamase resistance gene, the
sulphonamide resistance genes (sul1 and sul2), the
class 1 integron, the tetM ribosome protection gene,
and the tetA, tetB, tetC, and tetG efflux pump genes
[51]. Multiple types of bacteria, including E. coli, and
Vibrio parahaemolyticus can infect fish, and researchers
in Vietnam found that E. coli isolated from fish had
the ability to produce ESBL and showed decreased
susceptibility to tetracycline, trimethoprim/
sulfamethoxazole, ampicillin and cefotaxime [52]. They
may also harbor beta-lactam resistance genes, notably
blaCTX-M group 1 and blaTEM, the latter of which
codes for extended-spectrum beta-lactamase. Moreover,
since the use of chloramphenicol is now restricted in
Vietnam, the detection of chloramphenicol resistance
suggests that excessive use in the past had a lasting
impact on the bacterial ecosystem [53]. Highly resistant

strains of Enterococcus spp. harboring the erm(B)
gene for erythromycin and the tet(M), tet(L), and
tet(S) genes for tetracycline resistance as well as
streptomycin resistance gene aadE, were identified
from a farm that raises both fish and poultry [54].In
salmon farming, sul1 and sul2, strA, and strB, tetA
and tetG, blaTEM, dfrA1, dfrA5, and dfrA12 are the
most significant AMR genes [55]. Salmon-isolated
E. coli has also been discovered to carry quinolone
resistance genes like those identified in human patient-
isolated bacteria. This is concerning since it indicates
that horizontal ARG transmission between aquatic
microorganisms and human infections is possible and
that the resistant bacteria in concern were likely
picked up via the ingestion of contaminated fish [56].

Milk and dairy products

As one of the most commonly consumed animal-
based foodstuffs, milk significantly impacts the
economies of various countries and provides a vital
source of income for numerous families. Additionally,
this product is used as a raw material in manufacturing
several different products. Many different kinds of
bacteria can be found in milk and other dairy products.
Preventing the spread of infections such as mastitis
often involves the use of antimicrobials, but their
long-term administration increases the risk that the
bacteria being targeted will become resistant, making
it more challenging to treat animals infected with
these pathogens [57]. High levels of ARGs, including
erm(B), blaARL, and tet, which are liable for resistance
from antimicrobials generally used in humans, were
recognized in isolated Staphylococci from milk samples
of cows going through antimicrobial treatment [58].
Similarly, isolated S. aureus from a tank containing
bulk milk has been found to exhibit a functional mecA
gene [59]. Dairy products can also serve as a habitat
for methicillin-resistant Staphylococcus aureus bacteria.
Staphylococcus spp. strains isolated from milk and
dairy products had high levels of the msr resistance
genes (msrA and msrB), which activate a drug efflux
mechanism and confer resistance to macrolides and
streptogamine B [60]. Raw milk and its products, such
as cheese, are common sources of E. coli. These are
frequently reported to be resistant to streptomycin,
tetracycline, and ampicillin. Dairy cows are natural
hosts for Campylobacter spp., and as a result, milk
and dairy food products are often referred to as their
"reservoirs." The Campylobacter spp. isolates that
were collected from milk and products showed high
resistance to antibiotics like tetracycline, nalidixic
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acid, and ciprofloxacin [61]. High levels of ampicillin,
tetracycline, and amoxicillin resistance have been
reported in Helicobacter pylori isolates identified from
bovine, ovine, and caprine milk [62]. Scientific research
has shown that Listeria monocytogenes that are isolated
from raw milk exhibit a high level of resistance to
tetracycline but are sensitive to ampicillin. Because of
the widespread use of tetracycline in some countries
to prevent infections in the dairy industry, these bacteria
have developed resistance to numerous antibiotics
[63]. Also, tetracycline and erythromycin resistance
genes were shown to be more prevalent in Enterococcus

faecium which was isolated from mastitic milk samples.
The most common erm genes (ermA, ermB, and
ermC) and tet genes (tetK, tetL, tetM, tetO, and tetS)
were the most frequently discovered [64]. Researchers
have shown that Bacillus cereus isolated from

pasteurized milk had decreased susceptibility against
β-lactams like penicillin and ampicillin [65].

Eggs

Bacteria, such as pathogenic E. coli can be
transmitted from eggs to humans. One study has
found that the pathogenic E. coli in eggshells had bla
genes like blaCTX-M-2, and blaTEM, as well as tet
genes like tet(A), tet(B), and tet(C), which characterize
resistance to antimicrobials like ampicillin,
streptomycin, and tetracycline. Therefore, ARGs can
enter the food chain through tainted eggshells [66].
Eggs are a common route for Salmonella enteritidis,
one of the most common human pathogens. Researchers
reported that these bacteria, which were found in
chicken eggs and ovaries, harbor β-lactam-resistant
(blaCTX-M-1) and fluoroquinolone-resistant (qnrS1)

Table 2. Antibiotic-resistant bacterial food-borne zoonosis.
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ARGs [67]. The finding of genetic similarities between
methicillin-resistant Staphylococcus aureus (MRSA)
from human and egg samples provides additional
evidence that resistance genes might propagate through
the food chain [68]. The β-lactam antimicrobials, such
as ampicillin and lincomycin, are ineffective against
Campylobacter spp., while aminoglycosides,
tetracyclines, erythromycin, and fluoroquinolones are
ineffective against Enterococcus spp. [69, 70].

Fermented animal products

The high concentrations of beneficial bacteria found
in fermented foods, including Lactobacillus spp., are
ingested and find their way to the human digestive
system [71]. Research on the isolation and identification
of bacterial ARGs in fermented meals made from
meat and milk is listed in Table 1.

HUMAN HEALTH IMPLICATIONS OF AMR

One of the most usual ways in which bacteria and
their genes for resistance to antibiotics are transferred
from animals to humans is via the food chain. The
foods that harbor antimicrobial resistance genes, either
as whole bacteria or DNA fragments or as
bacteriophages, may pose a risk to public health
indirectly by expanding the genetic pool of which
harmful bacteria might acquire and potentially spread
such genes to other pathogenic bacteria. Retail raw
foodstuffs like milk, meat, and eggs, as well as
processed foods like fermented meat, dairy products,
and products containing raw eggs, might have harmful
bacteria due to the absence of pasteurization. Some of
these bacteria, when used as a starter culture, may
create favorable changes in the associated foods, while
others may cause spoiling or food-borne illness.
Symptoms of bacterial food-borne diseases include
diarrhea, abdominal cramping, nausea, vomiting,
headaches, and fever. Antibiotics are not usually needed
until the infection persists or spreads. Severe infections
in the elderly, infants, children, pregnant women, and
immune-compromised patients typically necessitate
antibiotic therapy [72]. When antibiotics are used in
animal feed, farmers and others who deal closely with
food-producing animals are at increased risk of
contracting antibiotic-resistant flora due to exposure
to bacteria found in animal populations [73]. The
majority of the population, however, picks up AMR
microorganisms from eating contaminated animal
products. By 2050, the number of deaths caused by

illnesses due to resistance to antibiotics is expected to
rise from seven lacs per year to ten million per year,
with associated healthcare and reduced productivity
expenses exceeding $100 trillion USD [74]. Due to
the global nature of this problem, increasing incidences
of clinical antibiotic resistance are being detected in
nations that have taken strong measures to reduce
antibiotic use [75]. According to the World Health
Organization, "the highest priority, critically important"
antibiotics include those that belong to the macrolide,
third - and fourth-generation cephalosporin,
glycopeptide, fluoroquinolone, and polymyxin families
[76]. Table 2 provides snippets from research that
found a link between human food-borne illness and
resistant bacteria found in animals and animal products.

A retrospective study of 10 years studied the
Salmonella strains containing the mcr-1 gene from the
investigation of diarrheal outpatients on the
consumption of meat products in Shanghai
Municipality, China [77]. Orsi and co-workers observed
that outbreaks of human listeriosis were possibly
caused by lineage II isolates, which were also
confirmed in 26% of the illegally imported meat items
[78]. According to a study done in the US, tetracycline-
resistant clone SA of C. jejuni in patients who
contracted the infection by drinking raw milk displayed
patterns similar to those of raw milk isolates on
pulsed-field gel electrophoresis [79]. A case study
reported women patients having urinary tract infections
due to E. coli which is resistant to ampicillin or
cephalosporin, through ingestion of retail meat foods
mainly chicken and pork products [80]. Similarly,
resistance to various antimicrobials was shown in
L. plantarum and L. fermentum strains isolated from
yogurt and the human gut [42]. In humans, Methicillin-
resistant Staphylococcus aureus (MRSA) infections
are treated with vancomycin as a last resort [81]. The
existence of Enterobacteriaceae having carbapenem-
resistant has been known for the past two decades, but
the spread of carbapenemase-producing
Enterobacteriaceae (CPE) around the world is a newer
problem because carbapenems are the last option
drugs capable of curing bacterial infections from the
gram-negative organism in humans [5]. Therefore, it
is reasonable to conclude that antimicrobial resistance
leads to a threat to life expectancies in the event of
serious infections since it causes patients to suffer for
longer, require hospitalization more often, and possibly
die due to treatment failures [76].
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FUTURE PROSPECTS

Finding antimicrobial substitutes is crucial for
reducing their usage in livestock farming. Public
awareness about the risks associated with consuming
raw foods wants to be increased. Further research is
essential to recognize the mechanisms responsible for
the spread of antibiotic resistance genes (ARGs) in
farms. Exploring the extent of horizontal transfer
(HGT) of ARGs from microorganisms to humans
through food is a critical area of investigation.
Collaborative and interdisciplinary investigation on
ARG pathways of animal-based foods to the human
GI tract is urgently needed. Investigation into improved
source management, including enhanced ARG removal
efficiency during livestock product processing, is also
necessary. Additionally, further monitoring initiatives
should be implemented in parallel with the current
antimicrobial resistance observing system.

CONCLUSION

The prevalence of antimicrobial resistance genes
(ARGs) is significantly higher in various livestock
reservoirs, highlighting the role of animal-derived food
products as a significant basis of ARGs. The extensive
use of antimicrobials in the poultry industry has led to
the presence of bacteria carrying ARGs in eggs.
Similarly, the swine production system, characterized
by widespread antimicrobial usage, has contributed to
the emergence and dissemination of ARGs. The
interconnectedness of fish farming systems with pig
and poultry production further exacerbates the issue of
ARGs in fish. The ingestion of milk and milk products
also leads to a potential avenue for the transmission of
ARG-carrying bacteria to consumers. The widespread
antimicrobial resistance threatens life in major illnesses,
causing patients to suffer longer and sometimes die
owing to treatment failures. The judicious and controlled
usage of antibiotics in both humans and animals is the
need of the hour to mitigate this ever-growing threat of
antimicrobial resistance.
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