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STATUS OF ACETYLCHOLINESTERASE MEDIATED

ORGANOPHOSPHATE RESISTANCE IN CATTLE TICK, RHIPICEPHALUS

MICROPLUS (ACARI: IXODIDAE)

INTRODUCTION

The ticks are significant blood sucking ectoparasites
affecting  domesticated animals causing serious threat
to the livestock industry, especially in tropical and
sub-tropical regions. Heavy tick infestations cause
severe economic losses directly through anorexia,
toxicosis, decreased milk production and weight gain,
damage to hide, treatment costs and indirectly by
increased mortality due to tick-borne infections. The
estimated annual cost of management of tick and tick-
borne diseases (TBDs) in livestock globally is
US$ 14000-18000 million and of India is US$ 498.7
million [1]. As per a recent report the annual cumulative
loss due to infestation of ticks and TBDs is 61076.46
million INR or 787.63 million USD [2].

Presently, control of ticks is predominantly
dependent on chemical acaricides, viz.,
organophosphates (OP), synthetic pyrethroids (SP),
formamidines and macrocyclic lactones (ML).
Application of these drugs often leads to acaricide
resistance, pollution of environment and residues in
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and sub-tropical regions, severely affect health and productivity of animals. Different classes of chemical
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lactones are currently used for controlling the tick infestations. The continuous and indiscriminate

treatments often leads to acaricide resistance, environmental pollution and residues in meat and milk

products. Organophosphate (OP) compounds were initially introduced as a replacement to organochlorines

as they were non-persistent and did not accumulate in the fat tissues. The global scenario of OP resistance

development in cattle tick, Rhipicephalus microplus has been summarized in the present review. The

various resistance mechanisms against OPs in R. microplus include target site modification in the

acetylcholinesterase (AChE), and carboxylesterase (CE) gene, as well as metabolic detoxification.
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meat and milk products. The tick resistance to
acaricides is inherited and has resulted from exposure
of tick populations to chemical acaricides that are less
affected by acaricides. The drug resistance mechanisms
in ticks are generally because of increased metabolic
detoxification and target site insensitivity [3]. The
establishment and development of resistance also
depends on the frequency of acaricide treatment, use
of low doses and poor quality acaricides, frequency of
the original gene mutation and mode of inheritance of
the resistant allele. Presently, the drug resistance in
cattle ticks has been the major challenge in controlling
tick infestation in  tropical and sub-tropical regions
including India. Large populations of Rhipicephalus

microplus are reported to be resistant to various classes
of chemical acaricides.

Organophosphates were introduced around 1950, as
a replacement for the organochlorine insecticides which
remained persistent in the environment and were prone
to accumulation in body fat. The OP compounds are
chemically unstable, non-persistent, most toxic of all
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pesticides to vertebrates [4], do not amass in fatty
tissues of animals and are highly toxic to humans
when compared to organochlorines. Dieldrin, ethion,
chlorpyrifos, chlorfenvinphos, diazinon and coumaphos
are the widely employed OP to treat the tick-infestation
in dairy animals. The OP pesticides cause various
adverse impacts on different environmental matrices,
animal and human  due to their direct exposure and
food chain bio-accumulation. They work continuously
as they are detected constantly in soil, sediments,
water and air [5, 6]. The present review primarily
deals with the various important aspects of OP
resistance development in cattle tick, R. microplus,
and may also enlighten resistance development against
other classes of acaricides due to their indiscriminate
and uncontrolled use.

RESISTANCE AGAINST ORGANOPHOSPHATES

First report of OP resistance in ticks was from
Australia in mid-1960s and is currently widespread
across all over the world including India (Table 1).
Development of OP resistance has minimized their use
in many regions of the world.

junctions of nerves and muscles. The AChE breaks
down or hydrolyses, the neurotransmitter acetylcholine
to acetic acid and choline immediately. The AChE is
considered to be target site of OP acaricides. Some
OPs may also exert substantial metabolic effects in
other pathways also. The AChE enzyme in insect and
mammalian systems is one of the fastest enzymes,
despite having a catalytic triad buried deep within the
protein structure. When cholinesterase inhibitor is given
to ticks, the cholinesterase is not available to break
down the acetylcholine, and the neurotransmitter
continues to cause the neuron to send its electrical
charge. Due to this, there is overstimulation of nervous
system, ultimately leading to paralysis and death [48].

Tick acetylcholinesterase and OP resistance

Development of OP resistance in ticks is complex,
multigenic and include metabolic detoxification and
modifications in the target AChEs gene [49]. The
metabolic detoxification mechanisms involving enzymes
had been reported amongst  the principle mechanisms
of OP resistance in R. microplus [50, 51]. In the
course of resistance development, there is structural
modification in AChE enzyme, and subsequently, the
drugs are unable to act on the resulted altered enzyme
[52]. The altered AChE enzyme which was first
reported from OP-resistant strain of a spider mite and
later in cattle tick [53]. Flies contain only a single
AChE gene and mosquitoes have two AChE genes,
while the R. microplus ticks express three different
transcripts encoding AChEs, viz. BmAChE1 [54],
BmAChE2 [55], and BmAChE3 [56]. The sequences
of amino acids of these three BmAChEs were not
closely related to one another than AChEs from
different organisms. The biochemical characterization
of baculovirus expressed rBmAChE1, rBmAChE2 and
rBmAChE3 has been reported [57] .

Metabolic detoxification and OP resistance

This mechanism is considered as one of the principle
mechanisms of OP resistance to R. microplus. The
OPs might interact with esterases in the integument of
larval and adult ticks, leading to the over-expression
of esterases which leads to resistance [58]. The  OP
resistance has been reported to occur primarily via
conformational and metabolic activities changes in
AChE enzyme in resistant ticks [59]. Besides that,
post-translational modifications in AChEs proteins are
also suggestive of resistance mechanisms [54]. Lee
and Batham [60] biochemically characterized the AChE
activity extracted from OP-resistant ticks, to be

Table 1. Worldwide reports on OP resistance in

Rhipicephalus microplus.

OP acaricide Country [Reference]

Chlorfenvinphos Jamaica [7], Colombia [8], Mexico
[9], South Africa [10]

Dieldrin Australia [11-13], Tanzania [14],
Mexico [15]

Chlorpyriphos Australia [13], Brazil [16-21], Costa
Rica [22], Mexico [23-24], Colombia
[25], New Caledonia [26]

Coumaphos Australia [13, 20], Mexico [9, 15,
23, 24, 27], Colombia [8], Costa
Rica [22], USA [28], Brazil [20],
India [29, 30]

Diazinon Australia [31], Mexico [9, 15, 23,
32], Colombia [8], India [30, 33-41],
New Caledonia [26]

Malathion India [33, 42-45]

Ethion Mexico [15], Uruguay [46], Australia
[47], New Caledonia [26, 47]

ACETYLCHOLINESTERASE: TARGET FOR

ORGANOPHOSPHATES

Acetylcholinesterase (AChE), a cholinergic enzyme,
is chiefly present at the post-synaptic neuromuscular



3

Status of acetylcholinesterase mediated organophosphate resistance ...

insensitive to OP inhibition. The Mexican populations
of R. microplus were shown to possess a target site-
mediated resistance to OPs, as reported through
esterase-based metabolic hydrolysis of Caumaphos.
Jamroz et al. [61] employed biochemical analyses for
quantification of esterase-based metabolic mechanisms
of OP resistance in the Coatzacoalcos, Corrales and
Mexican Tuxpan strains of R. microplus ticks. A
carboxylesterase, Est10, was reported to be more
abundant in the coumaphos resistant Tuxpan strain and
it was correlated with OP resistance. Villarino et al.

[62] also detected esterase-based metabolic resistance
to OPs in R. microplus adult female ticks. Li et al.

[51] reported  coumaphos resistance mechanism in R.
microplus (San Roman strain) as both enhanced
metabolic detoxification and insensitive AChE. The
Brazilian strain of R. microplus resistant to malathion
had increased levels of AChE in comparison of the
susceptible strains [63]. The percent uninhibited activity
of AChE in R. microplus larvae with propoxur was
reported to be positively correlated with a possible

role in development of malathion resistance in Punjab
field isolates of R. microplus [44]. There are reports of
involvement of other enzymes, viz., cytochrome P450
and glutathione S-transferase in imparting resistance
to OPs.

Molecular mechanism of OP resistance

The molecular mechanisms of OP resistance have
been studied widely in different insects. In ticks, the
target site of OPs is AChE and R. microplus has three
different genes, each encoding an enzymatically active
AChE. A large number of mutations have been reported
in all the three AChEs from all over the world leading
to target site insensitivity an important mechanism for
development of OP resistance. Models for the molecular
mechanism of AChE- resistances are based on the
detailed structure-function knowledge of the
instensively analysed AChEs from Drosophila

melanogaster, Torpedo californica and Homo sapiens.
A cartoon structure representation of active site motif
is given in Fig. 1.

Fig. 1.  A schematic representation of the AChE-1 active site occupied by Chlorpyrifos.
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Polymorphism in AChE 1 gene associated with

OP resistance

Baxter and Barker [54] first identified a cDNA,
BmAChE1, in R. microplus ticks presumptively
encoding AChE and no mutation was found in various
tick strains. They suggested that there may be another
gene encoding AChE which may be responsible for
resistance, or it may result from post-translational
modifications of BmAChE1. Temeyer et al. [57]
constructed a recombinant of AChE1 containing several
amino acid substitutions which showed reduction in
paraoxon sensitivity compared to that of AChE3 of
R. microplus. They compared 16 amino acid
substitutions to the susceptible type AChE1 sequence,
and found D188G, E196G, V331A and F390S
substitutions in the paraoxon insensitive construct, and
the D188G and F390S were considered to be
responsible for the paraoxon insensitivity.

Polymorphism in AChE 2 gene associated with

OP resistance

Five SNPs (G138A, G889A, T1090A, C1234T and
G1403A) in the AChE2 gene of laboratory-reared
R. microplus line IVRI-III and OP resistant field
populations from Bihar, India were detected by Ghosh
et al. [37]. G138A was a synonymous mutation, while
other four nucleotide substitutions were non-
synonymous leading to change in amino-acids, viz.

V297I (valine for an isoleucine in position 297),
S364T (serine for a threonine in position 364), H412Y
(histidine for a tyrosine in 412) and R468K (lysine for
an arginine in position 468). They suggested that these
mutations could be associated with OP resistance but
as there was a moderate to high range of resistance in
the field collected ticks having these mutations, the
actual contribution of these mutations in the
development of insensitive AChE2 could not be
ascertained. Nagar et al. [64] identified the same four
non-synonymous amino acid substitutions (V297I,
S364T, H412Y and R468K) in AChE2 gene of resistant
field populations collected from different agro-climatic
regions of India and in reference resistant tick lines of
R. microplus.

Polymorphism in AChE 3 gene associated with

OP resistance

In an OP-resistant San Roman strain of Mexican
R. microplus, Temeyer et al. [48] reported six mutations
(I48L, I54V, R86Q, V137I, I492M, and T548A) in
BmAChE3. However, none of these mutations alone
were sufficient to produce the resistant phenotype

because a number of susceptible individuals were
found to be homozygous for all the six mutations. The
R86Q substitution in BmAChE3 was the first mutation
in ticks demonstrated to confer insensitivity to OP,
resulting in reduction in paraoxon sensitivity and the
presence of it in OP-susceptible strains of R. microplus

strongly suggests that although this mutation may
contribute to resistance development, it alone is
insufficient to produce the resistant phenotype. Temeyer
et al. [65] genotyped the other five mutations and
evaluated their frequency and found that these
mutations were also present in susceptible strains,
suggesting that none of the mutations alone is directly
responsible for the insensibility of the AChE enzyme.

Jyoti et al. [44] analyzed nucleotide and their
deduced amino acids sequences of partial AChE3 gene
of R. microplus ticks of Punjab, India and found six
amino acid substitutions. Among the six substitutions
three (I48L, I54V and R86Q) have been earlier reported
from OP-resistant San Roman strain of Mexican R.

microplus, whereas three (V71A, I77M and S79P)
were reported for the first time and seem to be unique
to Indian ticks. Temeyer et al. [66] analyzed the
sequence data of AChE1, AChE2 and AChE3 genes of
nine susceptible and twenty resistant strains of R.

microplus and detected amino acid substitutions in
these genes of different field strains with variable
frequencies but they could not establish their possible
association between OP resistance convincingly.

The changes in AChE found to confer terget site
resistance in different insects and mites. The site near
triad His ( F331W, F331F/C); near anionic site (I129V/
T); acyl pocket (F290Y) and near oxyanion hole
(A201S) mutations were associated with target site
resistance in various insects and mites [67]. Recent a
molecular models of AChE-1 were generated to know
the modified enzyme by resistance-associated mutations
in lepidopterous organisms [68]. Similar molecular
modling of AChE-1 was geterated to investigate
resistance associated mutation in R. microplus. Near
anionic site (D188G, E195G and E196G); near acyl
pocket (F390S); near triad His (I493T) was involved
in OP resistance in ticks. All the other substitutions
involve changes in the resistance isolates than were
present in the susceptible forms. It is generally
interpretate due to steric hindarance that limits the
access of the OPs to the catalytic site (S256) to which
they bind so strongly in susceptible R. microplus. The
mutations reported by various workers in the AChE
genes of R. microplus are summarized in Table 2.
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OTHER EFFECTS AND ALTERNATIVE

APPROACHES

Transfer of pesticide resistance genes to bring

antimicrobial resistance among microorganisms

The OP compounds and many other pesticides can
bring various unknown detrimental effects after
reaching the environment. They can increase pesticide
- degrading organisms of the soil selectively and can
give the power of cross resistance to various
microorganisms to combat a wide range of antibiotics
[69, 70, 71].

Alternative approaches

Control of ticks and mites are important for control
of different parasitic diseases. As the development of
resistance against the acariides  as well as the anti-
parasitic drugs [72] is becoming a serious problem day
by day, some alternative methods are suggested for
control of ectoparasites and the diseases spread  by
them. Anti-tick vaccine [73], use of herbs [74] to
control different parasites, etc. are some important
area of study for that purpose.

CONCLUSION

The OP acaricides target AChE critical to tick
central nervous system function. Development of
phenotypic resistance to OPs in ticks is complex and
multigenic. The presence of mutations cannot be

correlated conclusively with resistance however, it
provides an insight into one of the possible mechanisms
operating in OP resistance in R. microplus ticks. The
cholinesterase gene family in ticks contains a number
of related enzymes and structural proteins. This can
also imply that other factors exist which contribute to
insensitive AChEs other than point mutations. The
functional complementarity of AChEs in vivo, presence
of multiple copies and alleles of AChE genes aides
R. microplus survival against selection pressure.
Therefore, frequency distribution studies of the SNPs
associated with OP resistance needs to be conducted
in tick populations of various geographic areas to
allow forecasting the effective life of OPs.
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