
Editorial

NOVEL CORONAVIRUS VULNERABILITY: METABOLIC DERANGEMENTS AND

ALTERED DEHYDROGENASE ENZYME ACTIVITIES  ARE CENTRAL TO THE

VIRUS PATHOGENESIS IN HUMAN, BAT AND OTHER ANIMALS

The novel coronavirus disease (COVID-19), caused
by highly infectious SARS-CoV-2, has caused a global
public health emergency sickening more than 177 million
people so far (https://coronavirus.jhu.edu). The disease
affects the lungs and several other organs giving rise to
diverse symptoms and complications extending for
months or even more. Men and elderly people are
significantly more prone to the infection and death
(Grasselli et al. 2020). Underlying conditions such as
type 2 diabetes, obesity, hypertension, cardiovascular
diseases, chronic respiratory problems, kidney damage,
and even ethnicity influence the disease outcome
(Grasselli et al. 2020, Smith et al. 2020).

The disease progression and fatality of SARS-CoV-2
have been explained in terms of distribution and functions
of the cell receptor angiotensin-converting enzyme 2
(ACE2) and the renin-angiotensin system (RAS). ACE2
is highly expressed in the lungs, blood vessels, and also
in intestine and kidneys frequently linking signs and
outcomes to these organs (Gheblawi et al. 2020). ACE2
cleaves vasoconstrictive angiotensin-II (Ang II) to Ang-
(1-7) and thus is a negative regulator of RAS and critical
for blood vascular homeostasis (Hardtner et al. 2013).
Depletion of antithrombotic ACE2 at the cell surface with
the binding of the coronavirus causes over-activation of

RAS and inflammatory cytokines resulting in unregulated
intravascular coagulation in the lungs and other tissues
in severe cases (Gheblawi et al. 2020). However, ACE2
alone does not explain the age and sex biases of COVID-
19 since the receptor expression is neither different among
men and women, nor it increases with age (Xie et al.
2006, Li et al. 2020). This paper hypothesizes altered
dehydrogenase enzymes and upregulated anaerobic
glycolysis as the most important pathogenic mechanisms
of SARS-CoV-2 which influence the undesired outcome
in comorbid patients, old age, etc., and also unite the virus
with its reservoir host.

ACE2  is  involved  in  energy generation
pathways
ACE2, an important component of alternative RAS

axes, is part of the body’s glucose homeostasis mechanism
executed through insulin production, secretion, and
insulin-mediated glucose uptake (Batlle et al. 2010,
Hardtner et al. 2013). RAS activation with loss of ACE2
is linked to altered glucose metabolism (Gheblawi et al.
2020). The expression of ACE2 is epigenetically
regulated and influenced by cellular energy deprivation
and stress such as hypoxia, increased AMP, and IL-1β
levels (Clarke et al. 2014). Thus, the expressions of ACE2,
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inflammatory cytokines, and RAS activation are
influenced by the glucose-linked energy homeostasis of
the body. ACE2 has a strong protective role in pulmonary
epithelium: higher ACE2 levels are noted in the lungs of
individuals with pulmonary diseases, presumably due to
higher levels of oxidative stress which make them more
vulnerable to COVID-19 (Pinto et al. 2020). Dysregulated
expression of proinflammatory cytokine interleukin-6 (IL-
6) by hyperactive immune cells has also been linked to
low ACE2 and energy levels (Gheblawi et al. 2020). All
these suggest a close link between body energetic and
SARS-CoV-2 pathogenesis.

SARS-COV-2  alters cell metabolism, especially
glycolysis
An increasing number of researchers are emphasizing

metabolic remodelling of host cells by SARS-CoV-2.
Clinical profiles of COVID-19 patients show
hyperglycaemia, insulin resistance as well as
dyslipidaemia (Wu et al. 2020, Ehrlich et al. 2020). The
virus also induces alterations in mitochondrial structure
and functions, including the Kreb’s cycle and oxidative
phosphorylation (Ehrlich et al. 2020, Singh et al. 2020).
A plasma metabolomic and lipidomic study shows
disturbed whole-body carbon, urea, and pyrimidine
metabolisms (Wu et al. 2020). Among several metabolic
alterations by the virus, glucose metabolism, particularly
glycolysis, is grossly deranged; amino acid metabolism,
with a lesser role in cellular energetic, is not altered
significantly (Ehrlich et al. 2020). Moderate and severe
COVID-19 is associated with dysregulated glucose
metabolism expressed as new and persistent
hyperglycaemia (Smith et al. 2020). The infected lung
epithelium shows strong metabolic transcriptional
responses, notably suppressed Kreb’s cycle and oxidative
phosphorylation, and upregulation of pyruvate to lactate
synthesis (anaerobic glycolysis, AnG), pentose phosphate
pathway (PPP), and lipogenesis towards nucleotide and
cholesterol synthesis favouring virus replication.  Infected
cells rely more on lactate over glucose oxidation and over-
express genes involved in AnG (Ehrlich et al. 2020). Some
of the other viruses such as adenovirus, human
cytomegalovirus, herpes simplex virus-1, Kaposi’s
sarcoma-associated herpesvirus also cause diversion of
glycolysis (Mayer et al. 2019), however, there might be
virus-specific pattern of metabolic hijacking in qualitative
and quantitative terms which needs further study.

Decoupling of mitochondrial respiration results in
oxidative stress commonly seen in severe cases in
COVID-19 (Ehrlich et al. 2020, Codo et al. 2020).
Metabolic diversion from oxidative phosphorylation to

AnG and PPP results in less ATP generation per unit of
glucose and is a likely cause of extreme weakness in
COVID-19 patients. Reduced energy generation is also
evident from a significant fall in mitochondrial membrane
potential ((∆ψm) in infected cells (Ehrlich et al. 2020).
Mitochondrial inhibition and diversion of pyruvate to
lactate results in reduced glucose oxidation to CO

2
 with

resultant glucose build-up and severe hyperglycaemia.
Codo et al. (2020) observed that glycolysis flux and
higher glucose concentrations directly enhanced the virus
load in infected monocytes and expressions of ACE2,
and pro-inflammatory cytokines IL-1β, IL-6, TNF-∝
causing the cytokine burst. Reduced levels of interferon
(IFN) and elevated levels of chemokines and IL-6 lead
to the development of severe COVID-19 (Codo et al.
2020, Blanco-Melo et al. 2020). Research also shows
close links between diabetes, obesity, and IL-6 expression
(Timper et al. 2017); hyperglycaemia acts as a trigger
for over-activation of inflammatory cytokines and
abnormal intravascular coagulation (Randeria et al.
2019). It is thus not surprising that these metabolic
diseases have been associated with the severity of
COVID-19.

Dehydrogenase enzymes – another target of  corona
virus
Dehydrogenase (DHase) enzymes are critically

important in energy generation, besides several other
biochemical functions. The virus upregulates the
expression of lactate dehydrogenase (LDH) enzyme
(Ehrlich et al. 2020). Clinically, serum LDH enzyme level
increases many-folds and is a predictor of severe COVID-
19 (Henry et al. 2020). LDH converts pyruvic acid to
lactate and NADH to NAD+ - this NADH recycling
enables the glycolysis pathway to continue at a faster
pace, and, in this case, synthesizing building blocks for
virus. Besides LDH, alterations of several other DHase
enzymes of glucose and lipid metabolism have been
observed in SARS-CoV-2 infection (Ehrlich et al. 2020).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
mRNA levels were highly correlated with SARS-CoV
positivity (Wong et al. 2005). Inosine monophosphate
dehydrogenase inhibitors such as ribavirin enhance the
infectivity of SARS-CoV suggesting roles of DHase
enzymes in protection against coronavirus (Barnard et
al. 2006). Glucose-6-phosphate dehydrogenase (G6PD)
is critical for cell survival against coronavirus and several
other virus infections and G6PD deficiency enhances
human coronavirus (HCoV) 229E infection (Wu et al.
2008). G6PD is involved in the production of NADPH
and glutathione metabolism which protect cells against
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redox-mediated damages. G6PD deficiency has been
detected among paediatric cases of COVID-19 (Al-Aamri
et al. 2020). Genetic G6PD deficiency is again associated
with a higher prevalence of diabetes and hypertension,
the most important comorbidities of COVID-19 (Gaskin
and Reddy 2001). From the demographic distribution of
genetic G6PD deficiency among the Mediterranean,
African, Asian populations and COVID-19 fatality rates,
G6PD deficiency has been predicted as a predisposing
factor to severe COVID-19 (Vick 2020, Jamerson et al.
2020).

Metabolic  signature  of  the  bat
The SARS-CoV-2 has been suggested to originate from

the bat, the only flying mammal. Fruit bat consumes a
large amount of sugar which is rapidly absorbed from
the gut and becomes available for oxidation by a strong
insulin response from an exceptionally well-developed
endocrine pancreas (Protzek et al. 2010, Meng et al.
2016). Despite its ability to maintain glucose homeostasis,
significantly high blood glucose and lactate levels indicate
strong anaerobic respiration in bat (Meng et al. 2016,
Pinheiro et al. 2006). Comparative evaluation of succinate
dehydrogenase (SDH) and LDH enzyme activities of the
small intestine indicates that the bat prefers AnG over
Kreb’s cycle to meet the energy demands (Ofusori et al.
2007). Despite higher sugar intake, the bat has the lowest
G6PD and higher LDH enzyme activities suggesting low
pentose phosphate pathway (PPP) and relatively high
AnG activities among the three nocturnal mammals, viz.
frugivorous bat, omnivorous rat, and insectivorous
pangolin (Adeniyl et al. 2012). Thus, from the above three
works together (Protzek et al. 2010, Ofusori et al. 2007,
Adeniyl et al. 2012) compromised PPP and mitochondrial
oxidation, and compensatory high AnG in bat are evident.
High contents of LDH enzymes have been detected in
skeletal muscles of bat which, like other mammals, use
the lactate pathway for burst of energy generation for
flying (Thomas and Suthers 1972, Antonova et al. 2018).
Bat has other adaptations also for flying: it has reduced
its genome size and lost a number of genes involved in
immune function including IFN locus copy numbers
(Zhou et al. 2016). An experimental infectivity study has
shown accelerated dynamics of replication-competent
vesicular stomatitis Indiana viruses in bat cell lines even
in presence of IFN-∝, IFN-β responses (Brook et al.
2020). Bat has developed a constitutive yet dampened
IFN response and other antiviral defence mechanisms
(Brook et al. 2020 and references therein) enabling fast
virus dynamics and downplayed its inflammatory
response for survival leading to long term viral persistence

(Brook et al. 2020, Gorbunova et al. 2020, Pennisi 2020).
Mitochondria and its active electron transport chain play
central roles in signalling pathways and production of
pro-inflammatory cytokines and other innate immunity
effectors such as IFNs, NF-ΚB, IL-6, C11 orf83, RNaseL,
IRFs, etc. (Yang et al. 2017, and references therein).
SARS-CoV-2 has been found to mute reactive oxygen
species (ROS)-mediated mitochondrial antiviral
signalling (Miller et al. 2021) that can potentially enhance
the chance of virus survival in Chiropteran and non-
Chiropteran mammals. It is plausible that compromised
mitochondrial innate immune response, suboptimal
Kreb’s cycle and PPP, and higher dependence on AnG
provide a safe and congenial environment for rapid virus
replication and propagation in bats making it a natural
reservoir of coronavirus and several other communicable
viruses. Strong similarities of bat’s metabolic signatures,
viz., high AnG, low mitochondrial respiration, and G6PD
activities with similar clinical profiles of COVID-19
patients are noteworthy, which also suggests that the virus
might have evolutionarily developed mechanisms to
modulate the host metabolic processes to replicate and
weaken cell defence for long term persistence.

Metabolic  soundness  and the type of  metabolism
are  the keys  against SARS-COV-2
Metabolism is the central theme of every living cell

for need-based energy generation, and synthesis of
different monomeric molecules as building blocks of cells
and tissues. To meet the changing energy and growth
requirements at different age body metabolism undergoes
multiple shifts in one’s lifetime (Ravera et al. 2019).
Sugar/glucose is the major energy source in humans.
During infancy and childhood, glucose-6-phosphate
(G6P) is majorly diverted to PPP, instead of pyruvic acid,
to synthesize NADPH, fatty acids, nucleic acids,
nucleotides, etc. for faster body growth (Hakim et al.
1980, Niedermuller 1986). This high synthesis activity,
along with subsistence level of mitochondrial respiration
and resultant low innate cell defence (Ravera et al. 2019,
Yang et al. 2017) might make infants and kids susceptible
to SARS-CoV-2. However, abundant production of
reducing NADPH and a low level of AnG protect this
age group from developing a severe form of the disease.
The growth requirements decrease, and energy demands
increase as we mature and cells channelize G6P through
pyruvic acid generating 2 ATP per glucose molecule, and
then completely oxidize it in Kreb’s cycle to generate
more ATP through oxidative phosphorylation (van Beek
et al. 2016, Ravera et al. 2019). I hypothesize that very
high metabolic rate (BMR) along with fully active
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glycolysis and mitochondrial respiration producing the
highest level of energy and innate immune effectors make
the teenagers and young adults more resistant to the
infection and development of the overt disease.

Glycolysis slows down with age to avoid the formation
of toxic intermediates and cells progressively shift to
mitochondrial respiration using fatty acids, and to lesser
extents, amino acids (Dong and Brewer 2019, van Beek
et al. 2016, Fussell et al. 2016). Mitochondrial respiration
also decreases in the elderly leading to incomplete
utilization of NADH/H+ and respiratory oxygen
generating a smaller number of ATP but more of ROS –
the hallmark of oxidative stress and aging (Ravera et al.
2019). PPP fast slows down with age (Hakim et al. 1980,
Ravera et al. 2019, Niedermuller 1986) producing less
NADPH and leaving cells less protected against oxidative
damage. Deficiency of G6PD, a key enzyme in PPP,
among the Mediterranean populations (Vick 2020,
Jamerson et al. 2020) or low-level activity in bat (Adeniyl
et al. 2012) thus enhance susceptibility or vulnerability
to SARS-CoV-2 infection. When cells cannot generate
enough energy through Kreb’s cycle due to aging-related
metabolic slow-down or low level of lipolysis they shift
back to glycolysis, but this time to AnG even in presence
of oxygen (Warburg effect) (Garcia-Alvarez et al. 2014,
Liberti and Locasale 2016, Ravera et al. 2019). AnG peaks
from the 3rd and 4th decade of life (Ravera et al. 2019).
Highly upregulated AnG, weak mitochondrial respiration,
and low NADPH production in greying and old ages (van
Beek et al. 2016, Ravera et al. 2019) strongly favour
SARS-CoV-2 infection, which in presence of a high level
of oxidative stress cause severe form of the disease.

Vitamin D deficiency has been associated with
COVID-19 infection and fatality, especially among the
elderly, and the population having higher skin melanin
contents in temperate countries (Lanham-New et al.
2020). Vitamin D supplementation has clinically proven
efficacy in recovery from the disease (Rastogi et al. 2020).
It influences basal metabolism and several biochemical
processes and stabilizes expressions of IL-6 (Bikle 2020,
Jain et al. 2020). The sunshine vitamin is also known to
reprogram AnG in favour of reductive power and
protection against oxidative stress; it restrains AnG
through down-regulation of LDHa (converts pyruvate to
lactate) and upregulation of LDHb gene (converts lactate
to pyruvate) besides influencing several other genes of
the glycolysis and polyol pathways (Santos et al. 2017).
The LDH enzyme activity in the small intestinal
epithelium of vitamin D deficient rat was significantly
less than in normal animals and administration of vitamin
D quickly restored the enzyme activity (Nasr et al. 1989).

Vitamin D administration has also been found to restore
altered serum LDH in rats with diabetic cardiomyopathy
showing the role of the sunshine vitamin in the restoration
of DHase enzymes (Zeng et al. 2017). The bat has a very
low level of circulating vitamin D  (Cavaleros et al. 2003)
and this may be correlated with its AnG and low DHase
activities. Whether vitamin D protects against coronavirus
partly by strengthening of LDH and other DHase activity
remains to be confirmed.

Transmission of SARS-CoV-2 has been documented
in minks, domestic and wild cats, dogs, and few other
species with low morbidity and fatality rates, except in
minks where the disease can be severe (Hosie et al. 2021,
CDC 2021). Protein is a major source of energy in strict
carnivores which might challenge the above glucose-
dependent hypothesis of SARS-CoV-2 vulnerability.
Nonetheless, glucose metabolism is important in
carnivores also. Minks efficiently use carbohydrates with
a glucose turnover rate of 4-5% per minute (Fink and
Borsting 2002). Cats have active gluconeogenesis to
synthesize glucose for organs like the brain. Interestingly,
fasting cats, dolphins develop severe and persistent
hyperglycaemia, similar to what happens in diabetes and
in COVID-19 patients, through gluconeogenesis and
glycogenolysis indicating glucose as a potential energy
substrate in energy deficiency states; however, long-
lasting hyperglycaemia suggests slow rate of glucose
oxidation (Schermerhorn 2013). “Stress hyperglycaemia”
with increased lactate synthesis is also common in cats
(Rand et al. 2002). Interestingly, cat leucocytes have
higher hexokinase and LDH enzyme activities than in
dogs (Washizu et al. 1998). Serum lactate levels of healthy
cats and dogs are considerably high which may increase
severely in sick animals suggesting AnG an important
metabolic pathway in these animals (Allen et al. 2008,
Redavid et al. 2016).

Lactate synthesis by skeletal muscle during heavy
exercise is well known. Although glycolysis and AnG
generate a smaller number of ATP molecules, the energy
generation is about 10-100 times faster than when glucose
is completely oxidized in Kreb’s cycle, through a massive
expression of genes of the glycolysis pathway and fast
recycling of NAD+ by the LDH enzyme (Liberti and
Locasale 2016). Thus glycolysis, especially AnG,
provides a burst of energy to skeletal muscles enabling
intense exercise, sprint, fast run for predation, fight and
flight responses etc. (Sullivan and Somero 1980,
Melendez-Morales et al. 2009). AnG is the major
metabolic pathway of bats for fast energy generation
during flying (Thomas and Suthers 1972). Anaerobic
glycolysis strongly favours SARS-CoV-2 replication
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(Codo et al. 2020) and use of AnG for predation, fight
etc. might make the carnivores susceptible to mild to
severe form of SARS-CoV-2 infection. Birds frequently
use glycolysis during a sprint (Melendez-Morales et al.
2009), making it another naturally susceptible host of
coronavirus.

Fatty acids contribute to life expectancy and are
important energy sources since around middle age
(Fussell et al. 2016, Johnson and Stolzing 2019).
Individuals with a low level of fat oxidation would
generate less energy, especially in old age when the rate
of glucose oxidation is already low. Obese people, having
a low-fat oxidation rate, are thus more vulnerable to
COVID-19. Lipolysis enhancing drugs such as statin,
fenofibrate reverse the altered glycolysis and lipid
accumulation and reduce viral load in lung epithelium
(Ehrlich et al. 2020). Bioactive lipids, exogenous ketone
supplementation have also been suggested to prevent
cytokine bursts (Bradshaw et al. 2020, Ghaffari et al.
2020). Excess sugar intake not only provides a ready
substrate for glycolysis, it would also not allow sufficient
fatty acid oxidation to proceed. Such over-dependence
of adults on sugars for energy and inhibition of
mitochondrial respiration by SARS-CoV-2 would reduce
body energy to critically low levels among the middle
aged and elderly and patients with underlying metabolic
diseases making them more vulnerable to COVID-19
fatality.

Different organs have different energy preferences.
Since SARS-CoV-2 relies on glycolysis for replication,
it is natural that organs with high rate of glucose turnover,
such as the lungs, brain, digestive system, and kidneys
would be more vulnerable to the virus. Lungs have an
extremely high rate of glucose utilization that can surpass
that of brain and kidney (Liu and Summer 2019).
Hyperoxia also exposes the lungs to high oxidative
damages making them highly vulnerable to cytokine
burst.

Besides the integrity of glycolysis and Kreb’s cycle,
overall metabolic rate of an individual might play
important roles against the SARS-CoV-2 infection. Both
the infection and death rates from COVID-19 are low
among growing children/young adults and higher in
elderly people, which may be correlated with age-related
variations in BMR and energy homeostasis (Lazzer et al.
2012, Ravera et al. 2019). The influence of ACE2 gene
therapy on glucose metabolism declined in old db/db mice
due to a general decline in cellular metabolism, including
gene expressions and homeostatic responses with age
(Batlle et al. 2010). The current worldwide COVID-19
case fatality rate of about 2.1% (https://

coronavirus.jhu.edu) is much less than nearly 20% fatality
in the Spanish influenza pandemic, 10% in SARS, and
34% in MERS indicating that the SARS-CoV-2 is
comparatively less lethal. It is assumed that teenagers
and young adults with high BMR and strong glycolysis-
Kreb’s cycle axis can resist or overcome the infection
while the elderly and persons with underlying metabolic
diseases succumb to this less virulent virus.

Diabetes mellitus, hypertension, and obesity are
associated with reduced or altered body metabolism at
multiple levels, and ACE2/Ang II deregulation making
these metabolic or lifestyle diseases important
comorbidities of COVID-19 (Grasselli et al. 2020). There
is impaired glucose uptake and oxidation, and
dysregulated glycolysis in diabetes (Guo et al. 2012).
Obesity is associated with several metabolic changes
including higher anaerobic glycolysis and reduced
oxidation of body fat (Uranga and Keller 2019).
Hypertensive subjects show whole-body metabolic
alterations such as hyperglycaemia, type 2 diabetes, and
hyperlipidaemia (Polak-Iwaniuk et al. 2019). These
metabolic insufficiencies reduce the body’s steady-state
energy levels favouring the onset of the cytokine storm.

In absence of long-term data, it is not yet established
whether climate or season influences SARS-CoV-2
epidemiology or not, but the virus has defied a general
rule of higher winter prevalence of flu and other
respiratory virus diseases. Different countries have
recorded higher COVID-19 cases in different seasons,
but winter peaks in temperate countries and summer peaks
in tropical countries, including India, are notable.
Environmental stress such as extreme heat or cold
enhance glycolysis especially AnG, compromise
mitochondrial respiration and fatty acid oxidation
(Bouchama et al. 2017, Sun et al.  2019, Chang et al.
2020) which are also the metabolic signature in several
other stresses, including oxidative stress. Although
oxidative stress is linked to SARS-CoV-2 pathogenesis,
further studies are required to establish clear links
between climatic stresses with the disease.

Metabolic differences between male  and female
and predisposition to COVID-19
Like age, there are sex-related differences in

metabolism too. A female has higher pyruvate, and beta-
oxidation than a male who has a high capacity for AnG
(Gaignard et al. 2015, Demarest and McCarthy 2015) –
these metabolic characteristics might make men more
suitable and women less suitable hosts for the virus
replication. Mitochondrial functioning, including electron
transport chain and ATP levels, are significantly higher
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in females (Silaidos et al. 2018). Males also have higher
deleterious mutations in the mitochondrial genome and
are more prone to mitochondrial dysfunction (Demarest
and McCarthy 2015, Marais et al. 2018) that might
predispose them more to an eventful outcome of COVID-
19.

Active mitochondrial respiration oxidizing glucose and
fatty acids are critical for protection against the virus.
Boosting body metabolism, energy levels, and antioxidant
power with the use of vitamin D, foods rich in readily
oxidizable fatty acids, ù-3 fatty acids and antioxidants,
fibre-rich foods for enhancing fatty acid availability
through fermentative digestion, therapeutic interventions
targeting lipid breakdown or reducing glucose
bioavailability, reducing intake of high glycaemic foods
including sugar, reducing stress, etc. might help prevent
infection, minimize the impact of COVID-19 and perhaps
save lives. Fasting limits sugar availability, enhances
lipolysis (Torchon et al. 2017) as well as mitochondrial
biogenesis (Mehrabani et al. 2020) and thus periodic
fasting by healthy adults might protect from a severe form
of COVID-19. Recent vaccine availability and
vaccination drive by several countries have raised global
hope against the disease. Yet, focusing research on virus-
host interactions at the levels of cell metabolism, energetic
and cell defence might provide valuable information
towards control of infectious diseases at present and in
years to come.
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