OUTBREAK OF HEMORRHAGIC SEPTICEMIA IN FREE RANGE BUFFALO AND CATTLE GRAZING AT RIVERSIDE GRASSLAND IN MURSHIDABAD DISTRICT, WEST BENGAL, INDIA

Joyjit Mitra*, Mintu Chowdhury and Chayan Bhattacharya

ABSTRACT: An outbreak of Haemorrhagic Septicaemia among free ranging buffaloes and cattle reared at the natural grassland at the embankment and surrounding area of Bhagirathi river in 3 blocks of Murshidabad district of West Bengal, India was diagnosed by clinical symptoms, postmortem examination, bacteriological study and biochemical tests. Among 154 affected animals (2.16% of total animals at risk) buffalo were 85.71% and cattle were 14.28%. A total of 52 affected animals (33.76%) died before starting treatment. Among the dead animals, 86.53% was buffalo and 13.46% was cattle. The ailing animals were successfully treated with antibiotic, analgesic and corticosteroid. The epidemic was finally controlled by vaccination, restriction of animal movement and proper disposal of carcasses.

Key words: Haemorrhagic Septicemia, Outbreak, Buffalo, Cattle,

Haemorrhagic Septicemia (HS) is an acute Pasteurellosis caused by particular serotypes of Pasteurella multocida and manifested by an acute and highly fatal septicemia principally in cattle and water buffaloes; the latter are thought to be more susceptible. Outbreaks have also been reported in small ruminants (sheep & goat) and pig (Gajendragad et al. 2012) and also reported in bison, camels, elephants, horses, donkeys and yak (Buxton and Fraser 1977).

HS is a major disease of cattle and water buffalo is Asia, Africa and some countries of South Europe and Middle East. Although it may be seen at any time of year, the worst epidemic occurs during the rainy season. It is most common in the river villages and deltas of South-East Asia among buffaloes used in rice cultivation (Khan et al. 2006). HS is widespread disease in India, occurs more frequently in poor husbandry conditions. In the present case, animals were reared under an extensive, free range system. Such conditions are an ideal environment for spread of HS (Gajendragad et al. 2012). The objective of the study was to diagnose the disease as well as to control the epidemic.

There was a report of outbreak in the month of June and July, 2013 among the buffaloes and cattle in 3 blocks, namely Suti-I, Raghunathganj-II and Lalgola of Murshidabad.
Outbreak of Hemorrhagic septicemia in free range buffalo and cattle grazing at...

district, West Bengal, India. The animals were reared at free range in the river bed of the Bhagirath. The details of the outbreak report is given in Table 1.

Primarily, the clinical and gross pathological findings were recorded. Postmortem examination of 7 carcass (buffalo 5 and cattle 2) were done and the samples from heart blood, tissues from heart, liver and lungs were collected. Blood slides were prepared from heart blood and inflammatory exudates.

The slides were stained by Gram’s stain and seen under microscope. Culture was made from heart blood in blood agar media and cultural characters of the organism were studied. All the tests were done at Bacteriological Laboratory, IAH & VB, Kolkata, West Bengal, India as per the methods followed by Buxton and Fraser (1977).

Among 154 affected animals (2.16% of total animals at risk), buffalo were 132 (85.71%) and cattle 22 (14.28%). Among the affected animals, 52 animals (33.76%) died. Among the dead animals, 45 were buffalo (86.53%) and 07 were cattle (13.46%).

The symptoms corroborate with the findings of Buxton and Fraser (1977).

Post Mortem Findings: Multiple haemorrhages on serous membranes and blood stained exudates in organs of thorax and abdomen were found. Intestinal contents were blood stained and mesenteric lymph nodes were found enlarged and haemorrhagic. Edema was observed in subcutaneous tissue and also in thorax, tongue and neck. Exudate was found in pleural cavity and pericardial sac. Enlargement of bronchial and medio-sternal lymph nodes was found with marble appearance of lungs due to thickening of septa. These observations corroborate with the findings of Buxton and Fraser (1977).

Cultural character: The organism grows aerobically with low Oxygen at 37°C. In blood agar media profuse growth occurs without any haemolysis (Fig.1).

Morphology: The organism was Gram negative, short ovoid rods with a tendency to bipolar staining by Leishman stain. Fig.2 showing Pasteurella organisms stained by Gram staining method.

Biochemical Tests: The organism showed the following biochemical characteristics:-
(a) Produce indole and H₂S.
(b) Reduces nitrates.
(c) No growth in Mc.Conkey agar.
(d) No haemolysis in blood agar.
(e) No urease production.
(f) No motility at 22°C.
(g) No liquefaction of gelatin.
(h) Production of acid without gas in glucose, sucrose, galactose, fructose and mannitol.

Diagnosis: Based on history, clinical symptoms, morphology, cultural and biochemical characters of the organism and post
Table 1. Details of the HS outbreak in Murshidabad district, West Bengal, India.

<table>
<thead>
<tr>
<th>Block</th>
<th>No. of animals affected</th>
<th>No. of death</th>
<th>No of animals recovered</th>
<th>Popusation risk</th>
<th>No. of vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suti-I</td>
<td>72</td>
<td>31</td>
<td>41</td>
<td>1900</td>
<td>1850</td>
</tr>
<tr>
<td>Raghunath</td>
<td>78</td>
<td>19</td>
<td>59</td>
<td>3700</td>
<td>3650</td>
</tr>
<tr>
<td>Gang-II</td>
<td>04</td>
<td>02</td>
<td>02</td>
<td>1520</td>
<td>1470</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>52</td>
<td>102</td>
<td>7120</td>
<td>6970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal Species</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo</td>
<td>132</td>
<td>45</td>
<td>87</td>
</tr>
<tr>
<td>Cattle</td>
<td>22</td>
<td>07</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>52</td>
<td>102</td>
</tr>
</tbody>
</table>

Mortem findings, the organism was identified as Pasteurella multocida and the outbreak was declared as Haemorrhagic Septecemia.

Treatment and Control: The affected animals were treated with (1) Inj. Intacef Tazo (3375mg for buffalo and 2250 mg for cattle) I/M daily for 5 days, (2) Inj. Zobid M (15-20ml) I/M daily for 5 days and (3) Inj. Prednisolone (5-10 ml) I/M daily for 5 days. Many animals (buffalo 87 nos. and cattle 15 nos.) responded to treatment which were in early stage of the disease. This finding have similarity with the findings of Kumar et al. (2011). Total 2070 nos. of buffalo and 4900 nos. of cattle were vaccinated by HS vaccine (manufactured by IAH &VB, Kolkata) @ 5 ml S/C at brisket region. The control measures include proper vaccination, disposal of carcass by deep burial with lime powder, restriction of movement of the animals, segregation of the infected animals, cleaning and disinfection of the contaminated premises by burning and application of disinfectants.

Haemorrhagic Septicemia (HS) is one of the most important diseases of bovines in South Asian and Middle Eastern country. In India mortality wise HS was replaced first and morbidity wise second as compared to four other epizootic diseases namely FMD, RP, Anthrax and BQ (Dutta et al. 1990). Many states in India were marked as high risk zones. Gajendragad et al. (2012) reported eleven outbreak of HS in West Bengal. The morbidity and mortality rate were 1.18% and 0.54% respectively. About 26 outbreaks have been recorded in Punjab state from 1989 to 1990 (Saini et al. 1991).

Outbreak of HS was recorded in Sri Lanka (De Alwis and Vipulasiri 1980), Zimbabwe (Lane et al. 1992), South Asia, the Middle East.
Outbreak of Hemorrhagic septicemia in free range buffalo and cattle grazing at...

Fig. 1: Showing Cultural Character of Pasteurella multocida in blood agar.

Fig. 2: Microscopically showing Pasteurella multocida (100X).

and Africa (FAO 1989), Aurangabad, Bihar, India (Kumar et al. 2011). The morbidity rate reported was 6.4 % and mortality rate 6.28 % (Dutta et al. 1990). A wide range of mortality rate (5 to 90%) was reported in different outbreaks and seasons in India, Nepal and the Philippines (FAO 1991). Most of the outbreaks have been managed by medical treatment and resulted in poor survival rate. Higher mortality in buffaloes (45.2%) as compared to cattle (15.8%) in Sri Lanka due to HS as reported by De-Alwes and DeAlwes (1981). Occurrence of the disease was higher in buffaloes when compared to cattle (Khan et al. 2006), which corroborate with the findings of present study.

HS has emerged as a disease of great economic importance in India, where cattle and buffaloes are abundant and vital for draught power and milk production. True recovery from clinical disease occurs only if the animals are treated in the very early stages, which are often impossible under field conditions. Surveillance for HS in the Indian subcontinent is very important for understanding the disease pattern and for providing better control measures for the disease and in turn reduce losses to livestock owners (Gajendragad et al. 2012).

HS occur most commonly in the month of June-September (rainy season). The organism (Pasteurella multocida) does not survive outside the animal to any significant degree so as to be a source of infection. Moist condition prolong its survival outside the animal making an outbreak more likely. Thus the disease tends to spread more during the wet season (Gajendragad et al. 2012). These findings also corroborate with the findings of present study.

HS generally occur in herds of animals belonging to different owners roam together in common grass lands, drink in common village tanks and are often even padlocked together at night, such animals are often less well managed, with lower vaccination coverage, than the more intensively farmed animals (Gajendragad et al. 2012). In present study the animals affected were grazed in a common area of a river side land (Char) situated in between 3 blocks and
this findings are similar with the previous one. HS is endemically occur in cattle and buffaloes in region under investigation and has incurred severe economic loss to poor live stock farmers of the area.

ACKNOWLEDGEMENT
Authors are thankful to the Director of Animal Husbandry & Veterinary Services, West Bengal and Joint Director, ARD., IAH & VB, Kolkata for providing facilities for the work. Appreciation goes to Dr. Pankaj Mondal, AD, ARD,(VR & I), Murshidabad, West Bengal for providing necessary information regarding the studies.

REFERENCES

